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Early investigation of virtual  machine subsystem  flexibility  cen- 
tered on  telecommunications  support  and  intercomputer  net- 
working  and  proceeded  in two  phases.  The3rst  phase  focused  on 
an  experimental  program for  the virtual machine control pro- 
gram CP-67 that  supported  remote work stations  and  pioneered 
intercomputer  spool  communications.  The  results of that  effort 
inspired a  second effort in the  same area  with some signijicant 
redirection.  This secondphase ultimately led to  the  remote spool- 
ing communications  subsystem  component of VMl370, the VMN70 
networking  package (VNET),  and a large  network of interactive 
computer  systems within I B M .  These  phases are  discussed  along 
with  suggestions for several  continuing  lines of work based  on 
current  results. 

Evolution of a virtual machine  subsystem 
by E. C. Hendricks  and T. C. Hartmann 

The  term  “hypervisor” is applied to  computer  systems  that pre- 
sent a very basic user program interface-one which is so nearly 
identical to  a  particular  computer machine interface that an  oper- 
ating system  intended to  support such  machines may serve  as a 
hypervisor  user program without software modification. The  user 
interface  presented by a  hypervisor is commonly called a virtual 
machine; the  term  “subsystem” may be applied to  the  complex 
of software used within a virtual machine. 

The first practical hypervisor systems emerged in the mid-1960s.’” 
CP-40 (Control Program 40) was a hypervisor  system which pre- 
sented virtual machines  that  were  compatible with the IBM Sys- 
tend360 c0mpute1-s.~’~  The first package designed specifically for 
use as a CP-40 virtual machine subsystem  was  the Cambridge 
Monitor System (cMS), a single-user interactive  operating  sys- 
tem. When they  were  completed in 1966, the  two  systems  were 
combined to form a time-sharing system which established  the 
structural basis for  the  current VMi370 system. 
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CP-40 and CMS were  developed  for  an IBM Systed360 Model 40 
that had been specially modified to perform dynamic  address 
translation.6  This CPU hardware  feature is used in conjunction 
with software  system  support  to  create virtual Dy- 
namic address  translation was not available on  other  Systed360 
Model 40 computers,  and so CP-40 ran only on one  machine.  Dur- 
ing this  same period the IBM Systed360 Model 67 was being de- 
~ e l o p e d . ~ ” ~  This  computer  supported  virtual  storage  through a 
different form of dynamic  address  translation,  and  was  to be of- 
fered as a product by IBM. In 1967, CP-40 was modified and ex- 
tended  for  the Systed360 Model 67, and  the new version of the 
hypervisor  was named CP-67 achieved popularity as an 
internal IBM software  development  support  system,  was made 
available by IBM for use as a  general-purpose time-sharing sys- 
tem,  and is still in use at  several installations  today.  In 1972, CP-67 
was extended  and  adapted  for use with the IBM Systed370 line of 
computers.  The  result was a new main-line IBM operating  system 
named VMi37Ol4 which is now in widespread use. 

The original objectives of the CP-40 project  were  to  investigate 
time-sharing techniques,  to develop  a time-sharing system  for  the 
IBM Systed360, and  to examine  hardware  requirements  for time- 
sharing  computers.’ As the virtual machines of CP-40 and CP-67 
demonstrated  their usefulness in practice,  the  curiosity of those 
concerned with the development of the  systems  centered  on  two 
areas of interest. One of these  areas  dealt with performance mat- 
ters in general,  and  focused on feedback of dynamic  activity 
characteristics  as a means of optimizing overall  system  resource 
scheduling.  The  other area  addressed  approaches  to  system reali- 
zation  through  careful design for evolution and mobility. 

This  article will treat  the  latter  theme, particularly in the realm of 
computer networking. The  intent of the  authors is to illuminate 
the  process  that  has led to  a number of concepts  and  functions 
that  are now a part of VM/370. The  character of this process  has 
been  one of discovery  rather  than  invention,  and in some cases 
the  results  have  come as a  surprise  to all involved. As the  evolu- 
tion proceeded, its direction changed markedly,  and  its  con- 
sequences  and  objectives  became more clearly articulated.  This 
article will attempt to follow that  process  and  accurately  convey 
its quality. 

Origins of virtual machine subsystems 

The  designers of CP-40 intended the function of the hypervisor to 
be restricted  to  the  management of real machine resources  for 
active  users.l  Software  support  services  such  as language trans- 
lators, file systems,  interactive  monitors,  and  the like were  to  op- 
erate  at  the virtual machine level wherever possible. The  ratio- 
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nale behind this  separation of function lay in the belief that  strict 
adherence  to an  interface  that had been carefully designed and 
documented  as  the IBM Systemf360 Principles of Operation5 
would have  the effect of limiting the size and complexity of the 
hypervisor  to  a manageable level. At the  same  time,  the  func- 
tional generality of this  interface would be  adequate to support 
any  application  software  that could be  used with a standard IBM 
Systeml360 computer.  Indeed,  one could use such  application 
software  together with its normal operating  system in a virtual 
machine without requiring any program modifications. 

For  the  most  part,  these  objectives  were  met.  The  several  restric- 
tions imposed by the  hypervisor on the  standard IBM Systeml360 
110 interface rarely gave rise to  practical difficulties in adapting 
systems  and applications from a  real to a virtual machine environ- 
ment. CP-40 placed most application functions  at  the virtual ma- 
chine  level,  but  technical design problems caused  several  varie- 
ties of VO access  method  support to be included in the  hyper- 
visor.  Translation  functions between real  and virtual devices, 
and  interactive  terminal handling accounted  for much of this 
support. A third such area was the CP-40 spool  system which 
fulfilled the  requirement  for virtual machine unit-record I/O ac- 
cess.  This  spool  system included unit-record  device  simulation, a 
direct  access  storage  device (DASD) file system,  and  real  unit-rec- 
ord  device  support. 

The  presence of these  functions in CP-40 was recognized as being 
arguably contrary  to the proscription of support  functions from 
the  hypervisor,  but an overriding  objective  was  to  produce a 
practical  system  that could be used to evaluate  the  conceptual 
approach. Refinement of the hypervisor to  the most basic  func- 
tions would have  delayed its availability and imposed a require- 
ment for  one  or more  virtual machine support  subsystems  for 
even the simplest operation.  Moreover, lack of familiarity with 
virtual machine systems suggested a more conservative  approach 
that  sought  practical  results as a guide to  further  design.  The  de- 
velopment of CP-40 was accomplished  quickly,  and  its  transforma- 
tion to CP-67 for  the IBM Systeml360 Model 67 followed in about a 
year. 

While CP-40 functioned  without requiring virtual machine sub- 
systems,  the facilities it offered in the  absence of such  subsystems 
were  scarcely  more useful than  those  provided by a computer 
without  any programming at all. CMS was intended to furnish 
most interactive  user  support  functions. CMS emerged con- 
currently with CP-40 in  1966, but was developed  separately using 
the  same  dedicated  real  computer. Although this  real  computer 
was used in its early development, CMS was  intended specifically 
for eventual use as a  virtual machine subsystem  monitor. When 
CMS and CP-40 had both  become  operational,  the  adaptation of 
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Figure 1 Original CP spool 
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CMS to a virtual machine environment  was  smooth  and  natural. 
Other  systems  such as OS/360, which had been  developed  exclu- 
sively for use as real IBM Systed360 native  operating  systems, 
were similarly adapted with little difficulty. 

functional Operational  experience with CP-67 and CMS naturally stimulated 
extensions ideas  for  functional  extensions  to  the  hypervisor.  The original CP- 

67 spool  system  shown in Figure 1 allowed users to create files 
only from spool representations of real card  decks  that had been 
read on real  card readers,  and  to  create spool  representations of 
private files only for  ultimate  output to real  printers or  card 
punches.  In 1968, the hypervisor  was modified so that a virtual 
machine could directly  access a spool file that had been  created 
by a  virtual machine as  output, without involvement of any  real 
unit-record I/O devices,  card  decks,  or listings (see Figure 2). This 
simple extension  amounted to  the first rudimentary form of com- 
munication between  virtual machine programs,  and it led 
promptly to  a new type of virtual machine application  subsystem 
monitor.  The implications of these  developments  have heavily in- 
fluenced  the evolution and use of VW370, and  the unfolding con- 
sequences  continue  to yield new ideas  for  virtual machine sub- 
system application and  design. 

114 HENDRICKS AND HARTMANN IBM SYST J VOL 18 NO 1 1979 



Figure 2 Direct spool file exchange 
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Given the ability to exchange spool files, CMS users  could readily 
employ previously existing CMS file utility functions to exchange 
any of their  private files. The same  combination of functions 
would allow file transfer  between CMS users  and special virtual 
machine subsystems supplying common services  to  interactive 
CP-67 users. OS/360 and  a modified version of CMS had both  been 
used as  batch-processing  subsystem  monitors running in CP-67 vir- 
tual  machines  prior  to  the availability of direct  spool file exchange 
between virtual machines.  Input to  these  batch subsystems  was 
initially limited to  card  decks  that  were  read by real card  readers, 
and output was produced exclusively on  real  printers  and  card 
punches. When the  spool file exchange facility was installed in CP- 
67, these  batch  subsystem  monitors  were quickly adapted  to uti- 
lize the new function, making their  services much more attractive 
and available to  interactive CMS users.  Figure 3 depicts the virtual 
batch  subsystems.  These  virtual machine batch  subsystem mon- 
itors  were most significant in that  they  formed a conceptual basis 
for  the  extension of CP-67/CMS user  functions without requiring 
modification of CP-67 or CMS. 

CP-67 exhibited  performance  characteristics  that were comparable 
to  those of any general-purpose  interactive  system at  the time. 
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Figure 3 Virtual  batch  subsystems 
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Figure 4 Virtual  machine  work  station  subsystem 
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Since it also  seemed to multiply the  capacity of the  computer by 
creating a separate  virtual machine for  each  terminal  user,  system 
programmers usually viewed CP-67 as highly efficient. Systems 
work  that had previously required  a  large,  dedicated  computer, 
which meant contending  for serially scheduled  late-night  ses- 
sions,  could  be  accomplished using CP-67 at  any  convenient  time 
without precluding the  use of the  computer by others.  These  ad- 
vantages, combined with the general  attractiveness of interactive 
computing, suggested a potential  for virtual machines  beyond the 
original objectives of CP-40 cited  above. 

From the point of view of the  developers, recognition of the  pos- 
sibility of a long evolution of virtual machine hypervisor  systems 
stimulated  interest in development  techniques  that could pre- 
serve  and  enhance  their  attractiveness.  One  perception  drawn 
from the early successes of CP-40 and CP-67 was that  the original 
intent of limiting the  complexity of the  hypervisor by excluding as 
much application  support  function as reasonably possible had 
succeeded.  This  perception inspired a bias against implementing 
new function  (e.g.,  user  directory  management) in the  hypervisor 
where the need could be addressed  through  software  at  the  virtual 
machine level. 

Early objectives 

By 1969, the increasing use of CP-67ICMS and  dependence  on it 
began to draw new attention  to  the  existing  functional defi- 
ciencies of the  system.  One  such area of deficiency was bulk 
telecommunication.  Interactive  user  terminals  were  often lo- 
cated at some  distance from the computer  installation,  but CP-67 
did not  support  spool  access by remote bulk terminals or work 
stations.  This meant that  users who needed  to  have  card  decks 
read or punched, or listings printed, would have to  do so using 
only the real  unit-record 110 devices at  the  computer  installation, 
and  that  arrangements for transportation of the  decks  and listings 
were  required. 

The CP-67 hypervisor  extensions allowing virtual machines to ex- 
change  spool files offered the possibility of a virtual machine sub- 
system  for  remote work station  access  to the spool  system with- 
out  further  hypervisor modifications (see  Figure 4). As the  direc- 
tion was  taken to place bulk telecommunication  support in its 
own dedicated virtual machine  subsystem,  the  focus of attention 
shifted somewhat.  Functional  extensions to CP-67 had never  be- 
fore  been  attempted  through  development of specialized virtual 
machine subsystems,  and so the feasibility of the  technique was 
uncertain.  The  project  came to be viewed as an  experimental ef- 
fort to shed  some light on  these  questions,  rather  than to produce 
a functionally useful package  for  distribution. It was hoped that 

IBM SYST 1 VOL 18 NO I 1979 HENDRICKS AND HARTMANN 117 



~~ ~~~ 

further work along similar lines with heavier  emphasis  on  practi- 
cal utility would follow if the  approach  showed  promise. 

design The first design problem to  arise  addressed the choice of a virtual 
problems machine supervisor  system  on which software could be built as 

an  interface  between  the CP-67 spool system  and  remote work sta- 
tions. At the  time,  experience with virtual machine subsystems 
was limited to CMS and  systems  that had been designed for use as 
native  real machine supervisors, mainly OS1360. A second initial 
design problem concerned  establishment of a means for  inter- 
active  users  to  direct  their  spool  output  to  particular  remote  work 
stations. The original CP-67 spool  system included no file attri- 
butes  such as the VM/370 spool  class  and  distribution  code which 
could serve  the  purpose,  and  the  desire  to  retain  complete  trans- 
parency of spool data  content argued against the use of imbedded 
data  control  records resembling job  control language (JCL) or 
identifier (ID) cards. 

CMS had been designed to be a single-user monitor  system, fea- 
turing  extensive  support  for  interactive  applications  and a 
fixed-block DASD file system.  Likewise, OS/360 was intended as a 
multiprogrammed batch job execution  system.  The  several  other 
operating  systems  that  were used under CP-67 had evolved on  real 
machines to meet their particular objectives as well. None of these 
systems was designed for use as a base for a virtual machine sub- 
system  of  the kind envisioned,  and  each of them included exten- 
sive support  for  functions  that would be of no use in the intended 
environment. 

performance The first assessment of difficulties likely to  arise in an  attempt  to 
concerns develop basic system  support using a virtual machine subsystem 

placed primary concern on  quest~ons of performance. An earlier 
experimental  telecommunication  system  named CLMON had been 
developed in late 1968 to  support  data  exchange  between  an IBM 
1130 system  and OS/360 running in a virtual ma~h ine . '~  CLMON had 
demonstrated  that telecommunication timing problems arising 
from possibly delayed  response of CP-67 in servicing a virtual ma- 
chine could be conveniently managed without modifications to 
the  hypervisor.  Performance  concerns  at  that time dealt with 
overall  system implications and divided into  three  areas:  potential 
for  excessive virtual storage  demands,  additive  execution  over- 
head due  to  cascaded  supervisors,  and  unproductive  hypervisor 
loading associated with spool  device  simulation. 

It was observed  that  a simple means of directing  spool  output  to 
particular  remote  work  stations could be afforded by driving each 
of the remote work stations from a different and  independent vir- 
tual machine subsystem.  Users could then implicitly select  desti- 
nation  work  stations by explicitly directing their spool output  to 
the  particular virtual machine subsystem  responsible for manage- 
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ment of the  desired  work  station.  This  approach  seemed  attrac- 
tive because it imposed no requirement  for  control  records in user 
spool data,  and no modifications to  the  hypervisor  were  required. 
Furthermore,  the  approach  seemed  natural  because  the  virtual 
machines serving as work  station  support  subsystems could each 
be given standard  one-to-eight-character virtual machine IDS sug- 
gesting their  associated geographical destination, making the 
users' specification of  file routing somewhat  self-descriptive. 

While replication of subsystem  software in multiple virtual ma- 
chines allowed easy file addressing  and  software tailoring to indi- 
vidual requirements of particular  remote  work  stations, it also 
threatened  to impose an unduly heavy paging load  on CP-67 result- 
ing from  the  addition of multiple virtual storage  spaces. Recogni- 
tion of this possibility discouraged  the use of an existing supervi- 
sor as a base for  the new virtual machine subsystem. Most of the 
execution  overhead  and  storage  requirements  associated with 
these  supervisors  were  related to  support for unneeded functions. 
These effects could obscure  experimental  results by introducing 
extraneous  overhead  that would be difficult to isolate and mea- 
sure.  Consequently,  an  entirely new and highly specialized vir- 
tual machine subsystem would be  developed to  serve  as its own 
virtual supervisor  and to require as little virtual storage as  pos- 
sible. 

The initial experimental effort was to  support a locally situated 
IBM 1130 system as a remote  spool work station  since it was  read- 
ily available and much of the required software  support  for  the 
work station  system  was  already  completed.  The  aforementioned 
CLMON system  for the 1130 computer  presented  a  nonstandard 
protocol  interface  that  was  compatible with Binary Synchronous 
Communication (Bsc)l6-l8 controllers  and adapters, but incom- 
patible with BSC terminals  and  other application interfaces.  The 
protocol was designed to quiesce line activity when message 
exchange  was  idle; it was  symmetrical in that it included no mas- 
ter-slave  distinction  between  the communicating machines,  and 
would normally communicate with an  identical  copy of itself. 

The CP-67 spool system used a  compressed data format  to  increase 
effective DASD capacity.  The  same kind of data compression 
would increase effective telecommunication line throughput. 
Data  blocks could be moved directly from the CP-67 spool through 
the  telecommunication  interface to  the remote  work  station in 
compressed  format, avoiding intermediate  decompression  and  re- 
compression  overhead. Going in the  opposite  direction,  however, 
direct  entry of packed data from a remote  work  station  into the 
CP-67 spool  system  could  impact compatibility by establishing an 
interprocessor spool format  standard  other  than  the universally 
accepted unit-record image. Since CP-67 logic treated  spool  data 
blocks as internally generated  items,  format  errors would  be in- 
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terpreted  as  internal  system  errors.  Therefore, any new provision 
for  user-level  software  generation of such blocks would either 
compromise  system integrity or require new verification and  er- 
ror-handling logic in the  hypervisor. 

After consideration of all the  factors,  it  seemed  worthwhile  to 
modify the CP-67 hypervisor to allow virtual machines to  read, but 
not  to  write,  compressed  data blocks directly  from  the  spool sys- 
tem.  This  interface  appeared  to  the virtual machin? as a normal 
virtual card  reader,  except  that  compressed  spool  data  blocks 
rather  than  ordinary  card images were  transferred to virtual stor- 
age.  This  approach minimized modifications to  the  hypervisor 
and significantly reduced  potential  execution  overhead.  The  use 
of a  symmetrical  protocol implied that  compressed  data  blocks 
would be transmitted in both  directions  and  decompressed by vir- 
tual machine subsystem  software  on  reception.  The ultimate re- 
sult of this design approach  was  that  the CP-67 spool data block 
format  was  adopted as  the  communication data format as well. 

CPREMOTE 

These design considerations led to  the CP-67 virtual machine sub- 
system named CPREMOTE, a single assembler language module 
requiring only the  8K-byte minimum virtual  storage size for CP-67 
virtual machines and using a single 4K page after initialization. 
CPREMOTE included its own  rudimentary  supervisor which was 
partly integrated with the  functional  support logic. YO operations 
were performed at  the  channel program level with virtual  Start 
YO (SIO) instructions,  and  the  necessary error recovery logic was 
included within the body of the program. Figure 5 illustrates the 
CPREMOTE Structure. 

CPREMOTE presented  clear  evidence that  the common  virtual ma- 
chine  furnished a healthy environment  for  the  growth of special- 
ized subsystems.  The modification to  the  hypervisor might have 
been  avoided  at some cost in the form of increased  unproductive 
overhead,  but it pointed out  the  fact  that  development of new 
types of functional support  subsystems  could place new require- 
ments  on  the virtual machine interface. It was  later  to become 
evident  that  some of the design compromises  necessary  to avoid 
further modifications to CP-67 significantly impaired the practical 
usefulness of CPREMOTE. 

Notwithstanding  these qualifications, the initial results  were  en- 
couraging. Development and debugging were facilitated by the 
isolation of the virtual machine environment,  the relatively small 
virtual storage dumps,  the simplicity of the virtual subsystem,  and 
the utility of the CP-67 user  console  functions.  The use of a sym- 
metrical  protocol  facilitated  testing by permitting concurrent  op- 
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Figure 5 CPREMOTE structure 
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eration of two  independent CPREMOTE subsystems within the 
same CP-67 system  connected by an  external  telecommunication 
link. Performance of CPREMOTE was most encouraging in that  its 
virtual machine was given no special scheduling or dispatching 
priority by CP-67. The  system load imposed by CPREMOTE was 
relatively modest,  throughput was only slightly below line speed 
limitations,  and  response  was  quick. All these  factors  were  com- 
parable to those  one might have  expected had the  support been 
integrated directly into  the  hypervisor. 

Despite  its  success as  an experimental  prototype,  the  operational 
utility of CPREMQTE was limited. The  requirement  for  separate 
virtual machine management of separate lines effectively pre- 
vented  convenient  operator  control.  The  absence of commands 
and  messages proved to  be a more serious  detriment  than had 
been anticipated;  operators  couldn't  independently  determine 
whether a line was working,  and could do little to identify and 
correct problems even when they  were  known  to  exist. While 
most local users  preferred  to submit card  decks  and  to  retrieve 
output directly from the  computer room rather  than to use the 
work  station facilities of CPREMOTE, the  alternatives available to 
physically distant  users  were less attractive. In response  to 
requests froq these  users, CPREMOTE was modified to  scan  card 
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input data from work stations  for ID cards  and automatically route 
files to  the specified virtual machine users.  The  rest of the defi- 
ciencies  were  tolerated,  avd CPREMOTE quickly found some lim- 
ited use. 

When CPREMOTE was  completed in mid-1969, the use of CP-67 was 
only beginning to  spread within IBM. As more CP-67 installations 
appeared during 1970, some  unexpected  trends in the use of 
CPREMOTE began to  materialize. An increasing number of CP-67 
users began to rely on the  remote work station  support,  and  its 
use became  part of regular system  operations at some locations. 
The availability of work  station facilities naturally suggested fur- 
ther possibilities. As an initial response  to  requests  for OS360 
compatible  support, CPREMOTE was modified for use as  an ordi- 
nary task  under OS/360. This  supported  some limited communica- 
tion between CP-67 and os/360, but  there  was  no facility for job 
entry  from CP-67 or  for  job  output transmission from OS/360. 

improved Many of these  operational  shortcomings  were  removed  through 
use independent  development  work by system  programmers  at the 

locations  where  the  functions  were  needed. CPREMOTE was in- 
tegrated  into  a HASP system so that CP-67 could serve  as a HASP 
work  station  for Osi360 job entry and job output  processing. Most 
installations  that used the package added  commands  and mes- 
sages to CPREMOTE and  developed  a  number of other  functions  to 
improve usability. When VMi370 became available in late 1972, 
CPREMOTE was  adapted to  the new VM/370 spool  data  format with- 
out changing its telecommunication  interface. CPREMOTE was 
used as a base for  the  development of a  number of different tele- 
communication  support  packages  for CP-67 and VW370, including 
several  for  the IBM 2780 bulk telecommunications  terminal.  One 
of these was released with VM/370 under  the name SRP2780 shortly 
after  the original release of the  system. 

The most interesting use of CPREMOTE was in the  transfer of CMS 
files between  users of different CP-67 operating  systems as shown 
in Figure 6. The possibility of employing CPREMOTE for communi- 
cation  between  two CP-67 systems had been foreseen,  but its use- 
fulness had seemed to  center  on testing of work  station  support 
without requiring actual  work  stations. In order  to  accomplish file 
transfer  between CMS users of different systems,  the sending user 
was  required  to  insert the standard CP-67 ID card specifying the 
destination  user ID into the spool representation of each file to be 
sent.  This  process could be accomplished using the CMS context 
editor,  but it was  awkward  and could not be applied to listing 
image files. In spite of these  reservations,  the  transfer of CMS files 
using CPREMOTE often  proved  to be faster  and more convenient 
than  any available alternative.  The  importance of this  result was 
in pointing the way to  the  user file exchange facility that was to 
emerge. 
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Figure 6 CPREMOTE user file exchange 
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In the  two  years following its completion, the  character of 
CPREMOTE had shifted almost  spontaneously  from  experiment to 
utility. This change in direction was unexpected  and not entirely 
welcome; the operational restrictions of CPREMOTE had been justi- 
fied on the basis of its experimental nature, but they were seriously 
hampering the use and  growth of the  function.  The popularity of 
CPREMOTE was attributed in part  to an unforeseen demand for 
intercomputer spool-based communication. Virtual machine resi- 
dence  and  symmetrical  protocol  appeared to have  contributed 
enough flexibility and  portability  to offset the  serious  practical 
flaws  of CPREMOTE. When these  observations  were  combined 
with ideas offered by users, it began to  appear  that a ~~-67-based 
spool  network  connecting multiple computers might  be realized. 
Finally,  the limitations of CPREMOTE were so fundamental  and 
severe  that it was discarded in 1971 in favor of an  entirely new 
subsystem serving the  purpose. 

SCNODE 

The  increasing popularity of CP-67 did not give rise to the  develop- 
ment of many specialized virtual machine subsystems as  the  de- 
signers had hoped and  expected. To the  contrary,  the  demand  for 
functional  extensions  was being met by repeated modification and 
enlargement of the CP-67 hypervisor  and cMS, and  the  structural 
separation of the  two  was becoming less  distinct. In rejecting spe- 
cialized virtual machine subsystems  for  system functional exten- 
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sions,  users  and  system  programmers  often  cited  doubts regard- 
ing efficiency and  performance,  the  functional limitations of the 
supervisor  base of CPREMOTE, the need for CMS file system  func- 
tions,  and  an intuitive feeling of awkwardness  toward  the  ap- 
proach. As design work began in  mid-1971 on a new network  sup- 
port  subsystem  to  replace CPREMOTE, the intent  was  to  produce  a 
package which would effectively counter  these  objections, offer a 
base for  other kinds of virtual machine subsystems,  and ulti- 
mately  encourage  others  to  exploit  the  technique  for  system  de- 
velopment  work  of  their own. 

The main features of the design strategy  adopted  for  the new sub- 
system  were to avoid requirements  for  special  hardware or exten- 
sive modifications to CP-67, and  to build a structure  that could be 
easily adapted  to changing interfaces as  the  needs  arose.  The  ob- 
jective  was  to install a  prototype  spool-based  network  that would 
generate some operational  experience.  The resulting feedback 
would help direct  decisions  concerning  functional  extension  and 
modification to  the network  support.  Because of their  common 
availability, voice-grade telephone lines and  standard BSC con- 
trollers  were  to be used for  data exchange  between  locations.  The 
name SCNET (for Scientific Center  Network) was applied to  this 
planned  network  as a whole,  and  the first version of the new vir- 
tual machine subsystem  was named SCNODE. 

message The five years  prior  to the  start of work  on SCNET and SCNODE 
switching had seen  the  emergence of some general-purpose  “resource-shar- 

ing” computer  networks offering integrated support  for  both in- 
teractive terminal sessions  and bulk data t r a n s m i ~ s i o n . ’ ~ ~ ~  These 
networks  employed  variations of a design technique  known as 
“message switching” in which any form of communication  be- 
tween  computers would be formatted  into  standard data blocks 
called messages for  presentation  to  the  network  interface.  These 
messages might or might not be automatically broken  into smaller 
units calledpackets for  transmission to their  destinations as rela- 
tively independent en ti tie^.'^-'^ Upon  the  assessment of the  re- 
sults of these  efforts, it seemed  that  some of the  thorniest  prob- 
lems  that were encountered could be avoided by exclusion of sup- 
port  for  interactive  terminal  sessions. 

There  was little apparent  reason  to  expect  to  provide good inter- 
active  network terminal response  without using high-speed lines 
and  dedicated  real  controllers which could maintain reliable tim- 
ing characteristics,  and  there was no reason to believe that such 
equipment would become  available.  Interactive terminal support 
through a virtual machine subsystem  interface would have meant 
extensive  and  unprecedented modifications to  the CP-67 hyper- 
visor.  Besides, no practical means could be foreseen  for  inter- 
active  computer  users  to maintain multiple accounts permitting 
access  to various  systems  administered by independent  computer 

124 HENDRICKS AND HARTMANN IBM SYST J VOL 18 NO 1 IW9 



operations  organizations.  To  increase  the likelihood of success by 
simplifying the  problem, the objectives of SCNODE were limited to 
file and message exchange,  and  interactive  terminal session man- 
agement  was left to  other efforts that  were  under way at  the 
time. 27 

The first step was to design a virtual machine subsystem  supervi- 
sor  base  to replace CPREMOTE. Managing individual lines from 
separate virtual machines was abandoned  because of the diffi- 
culty of coordinating  store-and-forward  exchange among multiple 
virtual machines within a single system,  and  to alleviate the  oper- 
ational  awkwardness of CPREMOTE. The resulting need to  con- 
currently manage multiple remote  interfaces using a single virtual 
machine subsystem  meant that  the new subsystem  supervisor 
would have  to  support multiprogramming and multiple con- 
current I/O operations. To meet the need for  natural  adaptation to 
dissimilar remote  interfaces, all functions  related  to  such  inter- 
faces  were isolated as  separate monitor tasks called line drivers 
which would present a standard program interface  to  the  inboard 
system. To produce  a  basic  supervisor  applicable  to a variety of 
possible subsystems, all application-related function was excluded 
from the supervisor. In particular, all functions that would depend 
on  special CP-67 interfaces would be placed at  the  task level so 
that  the  supervisor could be used on a real IBM Systed360 
compatible  computer. 

The  name MSUP was given to  the resulting subsystem  supervi- 
sor. MSUP was developed as a collection of small assembly Ian- 
guage modules,  each of which manages a  particular  supervisor 
function. MSUP supplies  basic I/O management,  task  creation  and 
deletion, main storage  allocation,  asynchronous  exits,  and two 
varieties of intertask  communication.  Task  synchronization with 
events  external  to  the  task is organized through  a basic WAIT and 
POST function  analogous  to  that  function of O S / V S , ~ ~ ~ ~ "  and  dy- 
namic task  status is maintained by a simple dispatcher. By dis- 
tilling all of these  functions to their  basic  elements,  supervisor 
execution  path length was minimized, and main storage  residency 
requirements  for MSUP code  were limited to  less  than 3000 bytes. 
System  support  functions  for  the SCNODE subsystem  were  devel- 
oped as  two  independent monitor tasks  identical  to line driver 
tasks  for  purposes of MSUP management (see Figure 7). 

SCNODE would use the CP-67 spool  system  to  retain files from local 
users, or files in transit from remote  locations, prior to their  fur- 
ther  transmission. CP-67 virtual machines could  concurrently  read 
multiple spool files, but  there  was  no means for file addressing  to 
remote  locations,  nor  any facility for  inspection  and  reordering of 
input spool file queues.  These  functions  were required so that 
appropriate files could be selected  for reading and  transmission 
on particular lines. 

28 
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SCNODE internal structure 
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Figure 8 SCNODE spool store-and-forward 
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SCNODE to  inspect  the  addresses  and  to  sort  its input file queue 
efficiently. A number of requests  for user-specifiable file attri- 
butes  and new spool functions had arisen in other  contexts,  and 
the  need  for  a  number of file attributes could be readily foreseen 
in addition  to  the need for  the  destination  address  for use by spool 
support  subsystems.  To meet these  requirements, CP-67 was ex- 
tended to include a  string of character  data called a “tag”  to be 
logically attached to  each spool file. The tag would be set by a 
user  and  interpreted by a  subsystem  but  not by the  hypervisor, 
permitting the tag to  be used differently by different  subsystems 
operating  concurrently within a single CP-67 system. 

The need for more extensive facilities for  inspection  and manipu- 
lation of the input spool file queue was not limited to SCNODE. 
Similar functions had been requested by virtual machine terminal 
users  for  various  applications. A natural  means of supplying these 
functions would have  been  through  extensions  to  the CP-67 user 
console  functions.  Since  console  functions had for  some time 
been executable from virtual machine programs,  this  approach 
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would have satisfied the  requirements  for SCNODE as well. After 
careful  consideration, significant extensions to the CP-67 com- 
mand language at  that time  were  rejected.  It  was  feared  that  once 
those  extensions  were  made  they would gain wide use quickly 
and would be impossible to withdraw should experience  prove 
them to be undesirable.  The  preferred  approach  was to seek  a 
means to gain such  experience  at  less risk to  the healthy develop- 
ment of the CP-67 user  interface. 

As an alternative,  an imaginary spool controller  device simulation 
was  experimentally  added to  the CP-67 hypervisor in  1972. The 
virtual  spool  controller  behaved  as  a hybrid device which had 
some DASD and  some  unit-record  device  characteristics,  but 
which had no real machine equivalent.  The  controller  presented a 
set of I/O commands  to  a  virtual machine program for input file 
queue  inspection  and manipulation. Using these  commands,  a 
virtual machine program could read  the tag for  any of its  input 
spool files, search  its  queue  for files with particular tag settings, 
reorder  the  queue,  and  selectively purge files. 

network With this much of the design in place,  a working prototype of the 
prototype new networking subsystem was developed. CPREMOTE was modi- 

fied to operate as an SCNODE line driver  and automatically con- 
struct ID card  images  from  the  destination user IDS specified in the 
tags of files to  be  transmitted. At this point  the package was suffi- 
ciently complete to meet its first objective as a replacement  for 
the original CPREMOTE program,  and a small network of CP-67 sys- 
tems  and  remote  work  stations  was  established using ScNODE in 
mid-  1973. 

Even before this  combination was put  into regular operation, 
SCNODE was in use within IBM in a different configuration. With 
the imposition of some interim restrictions to  the user  interface, 
the spool access logic in SCNODE was altered to  operate without 
the spool modifications to CP-67 to  improve its  portability. The 
System/360 stand-alone HASP work station  was modified to serve 
as an SCNODE line driver,  and was first put  into  operation with 
SCNODE in March 1973. This  package was used at several IBM 
installations to  supply CP-67KMS users with remote job  entry  ac- 
cess  to separate OS/360 systems using the HASP  MULTI-LEAVING 
protoco~.~' 

Remote  spooling  communications  subsystem 

As these  developments began to yield some useful operational 
experience with the new subsystem  design, most CP-67 installa- 
tions were converting  to VM/370. Many of the spool input  queue 
manipulation functions  that had been missing from CP-67 were 
available as VM/370 user  commands, so no serious  consideration 
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was ever given to propagating a ~~-67-style  virtual controller  de- 
vice into  the new system. V M ~ O  introduced  a number of changes 
to the spool interface  presented by CP-67, including the  addition of 
some access and queue manipulation functions  required by 
SCNODE. Adaptation of SCNODE to  these new spool interfaces 
presented no serious  obstacles. 

Functional extensions  to  the VMi370 hypervisor  to  support  the 
subsystem became necessary  once  again. A major objective was 
to retain transparency of spool-file attributes through network 
transmission. In other  words, all original VMi370 spool-file attri- 
bute settings would be recreated with the file upon delivery at  the 
destination.  The  use of one of the  existing VMi370 spool-file attri- 
butes that could  be set by the originating user  as  a network destina- 
tion address was rejected  because of potential impact to  existing 
applications. Instead, the VMi370 spool  system was extended to 
include a  general-purpose tag function similar to  that of the  exper- 
imental CP-67 extensions. 

The result was the VMi370 TAG command  for  user setting and in- 
spection of tags associated with virtual  output devices and  spool 
files.32 The virtual output file tag record is entered  as  the first 
record of a spool file using a  no-operation (NOP) command code. 
When NOP records are encountered  during  the reading of a file  by 
an ordinary virtual card  reader,  they  are discarded by the  hyper- 
visor and are not presented  to the virtual machine program. Real 
unit-record  control  units similarly discard NOP command data on 
file-output processing. 

Since VMi370 supported virtual machine program access  to unin- 
terpreted spool data blocks for  the telecommunication support 
package SRP2780, NOP data  records could be  detected  and  pro- 
cessed through the  same  interface.  Attempts to design a virtual 
machine subsystem  for spool queue management using only this 
interface  for file tag access yielded logic that was inefficient and 
awkward. This problem was addressed through an extension to 
the VMi370 Diagnose Read interface called Successor File De- 
~ c r i p t o r ~ ~  for  selective program scanning of sections of a virtual 
machine’s input spool file queue  without requiring each file to be 
opened and read. An “all-class” virtual reader function was in- 
troduced  to VMi370 to facilitate asynchronous notification to  the 
virtual machine subsystem of new spool-file availability. 

The  prototype work on SCNODE and  the addition of these  hyper- 
visor functions led to  the development of the Remote Spooling 
Communications Subsystem (RSCS) component of  VM/370.14’33334 
The intent of RSCS was twofold. On the  one  hand, it was to  re- 
place the remote bulk terminal support of SRP2780 with functional 
enhancements  and  extensions  for  additional  types of bulk termi- 
nals and HASP MULTI-LEAVING interfaces. On the  other  hand, it 
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was to  serve  as  a  base  for  further  functional  extensions  into  the 
intercomputer  networking  subsystem  intended by SCNODE. 

The RSCS command language was developed to resemble  the 
existing VM/370 operator command language as closely as possible 
while supporting the requirements  for  remote bulk terminal man- 
agement and spool networking extensions.  The existing SCNODE 
software was used  as  the  starting point for RSCS program develop- 
ment.  New logic was developed at the subsystem  control  task 
level for RSCS command  and message management,  system  gener- 
ation  and  initiation,  system  error  handling,  read  access to CMS 
files, common reentrant  subroutines,  and VM/370 spool system 
compatibility. A third subsystem  control  task was added  for 
RSCS, and a CMS-based installation and maintenance system was 
established using vMi370-standard techniques. 

The SCNODE line driver  for HASP MULTI-LEAVING was upgraded 
to handle RSCS commands  and  messages,  and  extended to  present 
an  interface as  either  a  remote HASP main host or a HASP work 
station. A CPREMOTE-based virtual subsystem  for IBM 2780 re- 
mote bulk terminal support, different from SRP2780, had pre- 
viously been adapted to operate within SCNODE. This line driver 
was similarly upgraded to handle RSCS commands and messages, 
and  support  for IBM 2770, 3770, and 3780 remote bulk terminals 
was added.  These  two line drivers,  combined with the SCNODE- 
derived subsystem  monitor  described above, constitute RSCS as it 
was originally released with VM/370 in January 1975, and as it is 
currently available today. Figure 9 is an illustration of RSCS func- 
tions. 

VNET  development 

The RSCS development  work was done during 1974 by the  authors 
at their  respective  locations which were  separated by several 
hundred miles. This  situation  gave  rise to a need for quick and 
convenient  exchange of programs,  documentation  and  messages 
between  the  two  locations.  Even  before RSCS was ready for  inter- 
nal distribution within IBM, an early version of a CPREMOTE-de- 
rived line driver  for  intercomputer  communication was developed 
and  put into operation with the new subsystem using a dialed tele- 
phone line connection. To maintain throughput and compatibility 
with CPREMOTE, the CP-67 spool data-block  format was retained 
for communication between VM/370 systems,  rather  than  the 
~ ~ 3 7 0  spool data-block format which excluded data compression. 

The intercomputer communication facility dramatically increased 
the efficiency of the  joint  effort,  created  a  convenient  test  envi- 
ronment  for  the new software  under  development,  and  generated 
immediate feedback regarding the usability of RSCS as it emerged. 
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Figure 9 RSCS functions 
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The advantages of the new Communication functions were so 
valuable that  dependence on their availability quickly followed. 
Demand increased as  others  learned of the  existence of the link 
and began to  use it, and  establishment of the dialed telephone 
connection  became  a regular operational  procedure.  The dialed 
connection was ultimately replaced by a permanent leased line to 
reduce  telephone  costs  and  free  the  operators from having to reg- 
ularly dial the  connection.  In  retrospect,  this was an early in- 
stance of a pattern of interacting  demand  and availability which 
was to  reappear many times in different circumstances  and which 
has  generated  the  impetus behind the rapid growth of what is now 
a very large computer  network. 

An independent project at another IBM location was undertaken 
in 1972 to  develop  a different spool-based  network.  This  network 
employed a  symmetrical  computer-to-computer  variety of the 
HASP MULTI-LEAVING protocol similar to  that of the TUCC/IOWA 

for  automatic forwarding of jobs,  output, and  console 
messages in a  manner analogous to  that of SCNODE. In early 1974, 

the "SUN" 
network 
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the HASP MULTI-LEAVING line driver  for SCNODE was modified to 
support this new HASP networking interface.  The new line driver 
was immediately put  into  operational use, and  practical  experi- 
ence with a hybrid VM/VO and os1360 spool  network was gained 
before RSCS development was finished. The functional concepts 
and  interface  requirements  for this network of dissimilar systems 
were jointly defined and formalized by  the  developers,  and the 
emerging internal IBM network was given the name “SUN” (for 
Subsystem Unified Network). 

When RSCS was completed  for  distribution with VM/370, attention 
turned  to developing network  support  on an RSCS base  for  use 
within IBM.  Rudimentary modifications to RSCS implemented in- 
direct  store-and-forward routing for  spool files, console  com- 
mands, and messages.  The CPREMOTE-derived line driver  that 
supported RSCS development  was  upgraded  for networking inter- 
connection  between VM/370 systems  and used as a base  for  a simi- 
lar  channel-to-channel  adapter line driver. A modest  network 
connecting several VMl370 systems  located mainly  in the  eastern 
U.S.A. was installed using the new RSCS extensions in the spring 
of 1975. Connection with the HASP- and ASP-based job network 
centered in the  west followed shortly  thereafter, yielding a na- 
tionwide hybrid network of about a dozen mixed VM/370 and 
OS/360 systems. 

This composite network  attracted a broad range of users,36  its 
installation membership grew steadily, many projects  became  de- 
pendent on its  services,  and  requests  for  added  function in- 
creased. In response,  the SUN interface was extended and  rede- 
fined, the  Network Job Entry (NJE) facility for MVS/JES237’3s was 
developed to  the  new  interface,  and  support was upgraded in  all 
of the participating systems. As internal IBM installations con- 
verted from OS/360, an increasing proportion of MVS systems be- 
gan to populate the  network  through JES2/NJE connections.  The 
combination of VM/370 and MVS in a job networking environment 
offered users  and  system  programmers  the  attractive  potential of 
efficiently combining the  two  systems to develop new approaches 
to their application problems. 

Support of the NJE protocol  posed a new technical problem to 
VM/370 that  required a further modification to  the  hypervisor.  The 
NJE protocol  introduced  extensive  new  attribute information for 
each OSNS data  set imbedded within a single job’s  output.  This 
meant  that in order  to avoid separating the  data  sets of a  network 
job into  independent files within the VMi370 spool  system,  the  at- 
tribute  control information would have  to  be imbedded within the 
VM/370 spool file data.  To address the problem, the VM/370 spool 
system was  modified to  accept NOP commands with data from 
virtual  output  devices  for  entry  into  spool files being created, sim- 
ilar to  the tag records  that  already  existed.  The ability to insert 
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Figure 10 VNET functions 
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NOP data  records  into  output  spool files enables  the NJE compat- 
ible line driver to encode  control information within VM/370 spool 
files  in a manner transparent  to  users  and communication inter- 
faces. 

From  experience  and  the  feedback  from  network users, new 
functions and improved human factors  were developed for  the 
VMi370 spool networking  subsystem on a continuing basis. Within 
a year  the package of networking updates  to RSCS grew very large 
and unwieldy, and  network  users  became increasingly confused 
over  the differences between  the  standard RSCS component of 
VM/370 and the  extended version which had largely displaced it 
within IBM. In an attempt  to alleviate these  problems,  the  net- 
working updates to RSCS were merged into  a new source  program 
base, and the new package was renamed VNET.28’39 The HASP and 
ASP job networking packages were combined with VNET to  form 
NJI (for Network Job Interface40), a set of software providing mu- 
tual compatibility with one  another  and with NJE for JES2.38 VNET 
was offered as IBM product  software with NJE and NJI in late 1976, 
and is available as such today (see  Figure 10). 

The IBM Corporate Job Network 

The small networks within IBM that led to NJE and NJI have now 
grown and connected to form the IBM Corporate  Job  Network. 
(The term “job” is not used here with precision; in fact, most of 
the  systems  participating in this network  use VMi370 which has  no 
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job concept in the batch-processing sense, and much of the  net- 
work trafFic represents file and message transfer  rather  than  batch 
job entry.)  Today  this  network  interconnects more than 200 dif- 
ferent  computers  throughout  North  America and Western Eu- 
rope, and it extends  to  several installations in Australia and  Ja- 
pan.  The  participating  systems  include practically every model of 
the IBM System/370 computer line and  use a wide variety of com- 
munication links from voice-grade telephone  connections  to high- 
speed  data  links,  channel-to-channel adapters, and MVS/JES2 mul- 
tiaccess spool devices.  The  intercomputer  protocols  used within 
the network are an  even mix  of the  extended CPREMOTE protocol, 
which is used between v ~ / 3 7 0  systems,  and  the NJE protocol, 
which is used by osivs systems  for communication with each 
other and with VMi370. The number of connected work stations, 
bulk telecommunication terminals, and interactive  terminals is 
such  that  computer  system  users  at  most company locations can 
access  the  network. 

The growth  rate of the  Corporate Job Network remained al- 
most  constant at roughly one  computer  a week through 1977, but 
that  rate doubled in 1978. The ubiquity of the  network is most 
surprising in that  it  has materialized quite  spontaneously  without 
any explicit mandate or governing organization.  In many cases 
new system  connections  to  the  network are made through com- 
munication links that had already been installed for  use by other 
kinds of support. Initial justification for  connection of a computer 
system  to  the  network  is likely to  be  made  on  the basis of experi- 
mentation,  particular application needs,  or contingencies. When 
a new connection is made,  the availability of network communi- 
cation  tends  to  lead rapidly to its utilization and dependence by 
diverse  projects  and applications that had not previously recog- 
nized the  usefulness of the facility. 

hierarchical The evolved structure of the  Corporate  Job  Network  exhibits 
characteristics some hierarchical characteristics as shown in Figure 11. Local 

groupings of several  computers in close physical proximity are 
likely to be internally linked by high-speed telecommunication 
lines or channel-to-channel  adapters. These links tend to  be em- 
ployed largely for  real  batch-job  entry  and for management of real 
unit-record output.  Slower-speed, long-line telecommunication 
links interconnect  these local groups and tend  to be used primar- 
ily for file and  message  transfer. Optimization of network  con- 
nectivity is usually addressed  at  the  local grouping level,  whereas 
alternate  path  routing is sometimes  used to balance long-distance 
traffic between the  groups.  These  patterns are curious in that  they 
have formed without explicit design provisions. As such, they 
may offer useful clues  for  future design directions. 

The  administrative organization of the Corporate Job Network 
bears a striking resemblance to its logical structure.  Just as con- 
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Figure 1 1  IBM Corporate Job Network  hierarchical  structure 
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trol of routing and traffic are  distributed  across  the  participating 
systems on an  equal  basis,  coordination of network  maintenance 
is accomplished cooperatively among the participating organiza- 
tions.  Each installation chooses location IDS for its own con- 
nected  computer  systems and work stations, and these are com- 
municated to  the  network  at large by means of a machine-read- 
able network connectivity map which is distributed using the 
network. Where more than one routing possibility exists  between 
one location and another indirectly connected  location,  the 
choice is made by the local installation according  to its own cri- 
teria.  Such  choices can result in looping network  paths, so rout- 
ing decisions must be  coordinated with other  locations on the po- 
tential  loops.  The  network itself allows  system  programmers to 
query  the routing status of any remote  location, so routing deci- 
sions impose little difficulty  in practice. 

Network utilization now encompasses practically all areas of IBM network 
internal computer  use  to  the point where  the network has  become utilization 
an integrated and indispensable  part of normal computer  opera- 
tions.  Unfortunately,  there is no satisfying answer  to  the  natural 
question, “What do people use the  network  for?” One can  rea- 
sonably expect  that any computer  application involving a  spool 
system is a potential networking application. Accounting records 
are kept  for all  files shipped and are used to prepare  periodic  net- 
work utilization reports.  These  reports typically show steady in- 
creases in  file traffic. Communication links that  are initially estab- 
lished as dial telephone  connections  tend to  be replaced by leased 
lines, and leased-line bandwidth tends  to expand  to  accommodate 
increasing traffic load. 
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The availability of network  communication  has  spawned  an  array 
of application support  packages  that  improve  the human factors 
of the basic network  interfaces.  The CMS automatic  command  ex- 
ecution facility (EXEC) is commonly employed  to simplify file 
shipping and job  entry for  interactive  users.  A growing selection 
of application programs  for  automatic  memo and mail composi- 
tion,  delivery,  and logging  via the  network  are available within 
IBM. Another  package employs a cMs-based virtual machine sub- 
system to receive  and  execute  requests from remote  users  for 
automatic file retrieval.  Several  aperiodic  newsletters,  describing 
the  status of these  and  other  application packages and  reporting 
computer  system  and language activity in general,  are  prepared in 
machine-readable form and  distributed to interactive  users on the 
network. 

Conclusions 

The rapid spontaneous  growth of the IBM Corporate  Job  Network 
is probably attributable  to  the design philosophy employed by its 
software  support. The lack of dependence on uncommon com- 
puter machinery and V M ~ O  hypervisor modifications, the  ease of 
installation requiring no system  generation or unusual virtual ma- 
chine specification, the familiarity of the operator command lan- 
guage and procedures  for  subsystem loading and maintenance, 
the relative operational  independence afforded by the  peer  rela- 
tionship of the interconnected  systems,  and  the simplicity of the 
user  interface  have  encouraged  computer installations to  invest 
some effort to give VNET a trial.  The  simulated unit-record device 
interface affords operating  systems  running  under VMi370 some 
access to the  network without any  software modifications at all. 
Initial experiences with an unfamiliar computer  system  interface 
appear  to  generate  strong lasting effects.  A crucial factor in the 
success  or failure of new system  software is its cooperativeness 
with naive users. 

The continuing attractiveness of accepted software over a long 
term hinges  on its adaptability to  a changing environment.  The 
internal  structure of VNET that  separates line management func- 
tions  into disjoint line drivers  eases  conversion and naturally  ac- 
commodates individual local modifications. Requirements  for 
coordinating software changes across  more  than two directly con- 
nected network systems would have limited network growth to 
small groups of installations  that could be brought under  the  con- 
trol of a single computer  operations  organization. Adaptability to 

ened  the  appeal of VNET and created new application possibilities 
for VM/370. Aside from the internal  structure of VNET, the isola- 
tion of the virtual machine environment  and  the  interactive  sup- 

HASP  MULTI-LEAVING, SUN, and, finally, NJE dramatically broad- 
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port facilities of CMS have  streamlined  development  and  testing 
activities.  This in turn facilitated quick  incorporation of ideas  for 
improvements  as  they  emerged. 

Virtual machine subsystems supplying functional extensions to 
VM/370 have become common.  Such  subsystems  are widely used 
to maintain tape  libraries and user  directories, to help operators 

~ manage volume set-up  requests,  to  provide  unit-record utility 
functions,  to  schedule  jobs  for virtual machine batch subsystems, 
to monitor VM/370 system  performance,  and to adapt VM/370 to a 
number of interactive  networks.  Designers of these  subsystems 
have regularly chosen  either CMS or OS/VS to serve  as  a base, 
apparently to facilitate  development.  Despite  the  intent to offer a 
widely applicable base  for virtual machine subsystem program- 
ming, the  authors  are  aware of only several  cases in which MSUP 
is used with subsystems  other  than RSCS and VNET. The unfamil- 
iarity of the  internal  structure of MSUP and  the lack of specific 
provisions for compatibility with CMS and OSNS seem to have 
discouraged its acceptance. 

The  cost of added  system  overhead  imposed by moving functions 
to virtual machine subsystems  has  proven  to be far  less signifi- 
cant  than had been intuitively feared.  In  general,  performance 
problems  that  have  arisen with VNET have been manageable 
through minor redesign of virtual machine subsystem logic. Fur- 
ther performance improvements  could probably be achieved 
through modification of VNET and VMi370 hypervisor logic to  re- 
move observed  bottlenecks, but the bulk of user  concern  seems 
to center on functional  extensions  instead. Performance concerns 
appear not to be a  necessarily good reason  for integrating new 
function into  the VM/370 hypervisor  rather  than implementing it at 
the virtual machine level. 

Constraints on logical coordination imposed by the  interface be- 
tween  the virtual machine and the  hypervisor  are  a different mat- 
ter.  The very same  interface  restrictions  that isolate the virtual 
machine environment  and impede the  natural  increase of overall 
system complexity41 give rise to limitations that can hinder func- 
tional improvements. It is instructive to  observe that nearly all of 
the modifications to  the VM/370 hypervisor  that  arose  from  the 
evolution of VNET have  extended  and enriched the virtual ma- 
chine  interface;  none  have been necessitated by poor perform- 
ance. 

The future 

Some major areas of unrealized development potential remain 
with VNET itself. Communication logic could be extended  to man- 
age parallel trunks  between  two  locations  and multiple logical file 
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streams on a single trunk. Developing logic to  support  these  func- 
tions would be  straightforward  enough,  but devising techniques 
for scheduling file transmission  to  take  advantage of such  capabil- 
ity is not as simple. There is no question  that  the ongoing trans- 
mission of a very long file should not block the transmission of a 
very  short file as it does  now.  Also, within the  context of a single 
trunk, it is clearly undesirable  to multiplex concurrent  transmis- 
sion of identical length files. Logic that could make intelligent 
scheduling decisions  for multiple streams,  trunks, and files  of var- 
ious lengths would present some intriguing design problems. 

VNET permits operators  to  change  routing manually during net- 
work operations in response  to failure of computer  systems or 
communication links.  Correct  decisions concerning rerouting 
have proven very difficult for  operators  to make reliably. This 
situation  has  stimulated many requests  for  some form of auto- 
matic path  selection  function in VNET. A clear possibility would 
be to adopt  the  Network  Path  Manager function currently  em- 
ployed by NJE for JES2,37 and  a  number of other possibilities exist 
as well. Logic that could choose  among multiple paths to  route 
files toward their  destinations  presents a significant design chal- 
lenge in its own right,  and it would further complicate the  sched- 
uling questions  described  above. 

virtual Possibilities for continuing work in the broader realm of virtual 
machine machine subsystems  are  even more intriguing. Some  work  has 

subsystems been done to  develop VM/370 spool support  for real unit-record 
devices using a VNET base. A comprehensive virtual machine 
subsystem  to  support real spool devices could produce  an envi- 
ronment  that would encourage  speedy evolution of new spool 
functions.  Such  a  subsystem could even lead to  the  ultimate  re- 
moval of  real spooling functions from the VM/370 hypervisor  alto- 
gether,  thereby reducing the complexity and extending the useful 
life of the entire  system. 

Similarly, some preliminary work has been done in supporting 
VM/370 interactive  user terminals through virtual machine sub- 
systems. While this kind of subsystem  function  requires a signifi- 
cant new extension to  the interface  between  the  hypervisor  and 
the virtual machine,  there is every  reason  to believe that  the con- 
cept is feasible. Terminal support  constitutes  a large part of the 
programming in the VMi370 hypervisor;  its removal from the  hy- 
pervisor and development of techniques  at  the virtual machine 
level  for  selection of installation-specific terminal management 
would be most beneficial. 

The  concept of an  interface  that would allow a virtual machine 
program to  simulate an arbitrary I/O device  to  another  virtual ma- 
chine (a generalized virtual  channel-to-channel  adapter)  has  been 
discussed  for  some  time. If such  an  interface were realized, a 
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virtual machine subsystem could support virtual devices  for  other 
virtual machines. As one  result,  the  entire VMl370 spooling func- 
tion might be made to reside in a  virtual machine subsystem. The 
practical potential of such a proposal  can surely be challenged ' today, but there is no way to  guarantee that it would not  lead to 
useful developments of some  kind. Given the System/370 I/o ar- 
chitecture,  the  technical design of the required  interface  between 
virtual machines presents serious practical difficulties. Should 
further study in the  area shed more light on the  exact  nature of 
these difficulties, the result might introduce new concepts of I/O 
architecture  that would benefit  all areas of system design. 

There remains the unfulfilled potential  to move software origi- independent 
nally developed as  a virtual machine subsystem entirely out of the VNET 
VM/370 system. If one were to  develop a file system  for VNET, this 
could be readily accomplished without difficulty. A spool system 
similar to  the MVSIJES2 multiaccess spool  that could be shared 
between VMI370 and VNET running on an  independent  processor 
would allow VNET to function as a front-end  processor,  and could 
greatly improve network reliability as  a  result.  The realization of 
VNET as  an  independent  system could reopen some lines of devel- 
opment  that had been  abandoned in the  past  for  reasons of per- 
formance  and timing dependencies-to wit, integrated bulk and 
interactive  network  support. 

The  prospect of eventually moving virtual machine subsystems 
outboard  to  operate in stand-alone  mode on real computers refo- 
cuses  attention on the special hypervisor  interfaces  required  for 
the  subsystem  functions.  In  the  case of VNET, these  interfaces are 
mainly the virtual side of the VMi370 spool system. In the  general 
case,  the interfaces used by a virtual machine subsystem  to  inter- 
act through the  hypervisor with VMi370 users  and their virtual ma- 
chine programs can effectively bind the  subsystem  to its virtual 
machine environment.  It is useful to consider  the  hypothetical 
displacement of a  subsystem  to  a  separate real machine environ- 
ment in the design of these  interfaces. 

Finally, the various  support  functions now included in CMS might 
be broken  into  separate building blocks and reassembled to form 
a family of specialized virtual machine monitor subsystems.  A 
common shareable file system similar to  the current CMS file sys- 
tem might establish mutual data compatibility among all the mem- 
bers of the  subsystem family. Specialized interactive language 
subsystems,  graphics  subsystems,  data  base  subsystems, admin- 
istrative  support  subsystems,  and  basic  system  support  sub- 
systems similar to VNET are some possibilities. An environment 
in which these could be independently developed without losing 
mutual cooperativeness would realize a long-standing goal of the 
virtual machine concept. 
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Virtual machines and  the  subsystems that evolved to  make  them 
useful have already  produced  some fascinating developments. 
Further possibilities now seem more promising than ever,  and  the 
end  is  nowhere in sight. 
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